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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-49

SOME ASPECTS OF AIR-HELIUM SIMULATION
AND HYPERSONIC APPROXTMATIONS

By Eugene S. Love, Arthur Henderson, Jr.,
and Mitchel H. Bertram

SUMMARY

Some illustrations of the differences that may be expected between
results cbtained in hypersonic wind tunnels that employ air and results
obtained in those that employ helium as the test medium (imperfect-gas
effects are not considered) are compiled and presented herein. Simple
expressions are presented that demonstrate the possibility of simulating
air results in helium tests and of transforming helium data to equiva-
lent air data. Nonviscous and viscous simulations are considered. 1In
most cases, the methods and the general forms of the expressions for
simulation that are derived are applicable to any two ideal gases having
different ratios of specific heats.

INTRODUCTION

The significant contributions that hypersonic helium tunnels can make
in the study of fluid-dynamic problems is well recognized, and much infor-
mation has been published that deals with hypersonic tests in helium or
with supporting information. References 1 to 18 are some examples of this
work. Most of the reasons for resorting to the use of helium in hyper-
sonic tunnels have been discussed in the literature and will not be
reviewed in detail here. Briefly, the primary advantages of helium over
air as a test medium in hypersonic tunnels are the much lower pressure
ratios required for tunnel operation, the more attractive area ratios
(from the viewpoint of throat design), the inertness of helium, the higher
Reynolds numbers and dynamic pressures obtainable, and, probably above all
else, the very low liquefaction point of helium.l This low liquefaction
point virtually eliminates the need for heaters in helium hypersonic tun-
nels until Mach numbers of the order of 26 are exceeded, as illustrated
in figure 1. For Mach numbers of the order of 40 a heater capable of

lHelium is the most difficult of all gases to liquefy; its critical
temperature is about 9.4° R. See reference 15 for additional information
on helium.



producing a stagnation temperature of the order of l,OOOO R appears
adequate to avoid liquefaction.

There are, of course, basic differences between air and helium that
cause concern when hypersonic tests are undertaken in helium with a view
toward interpreting the results in terms of what might occur in air. For
many purely fluid-dynamic studies this simulation problem is of no con-
cern; however, for some fluid-dynamic studies and for all aerodynamic
studies it is important to know whether adequate air-helium simulation
can be achieved, or whether helium data can be suitably transformed to
air data. It appears reasonably certain that simulation of the imperfect-
gas effects that become significant at extremes of temperature and pres-
sure is impossible. However, for a wide range of test conditions an ideal
gas may be assumed, and for this case the primary source of the simulation
problem lies in the difference in the ratio of specific heats for helium
and air, 5/3 and 7/5, respectively; in this case there is some opportunity
for simulation.

FE N

A number of aspects of the air-helium simulation problem have been
examined recently as part of a study of the possible utilization of a
hypersonic helium tunnel and the interpretation of results of tests
therein. An ideal gas has been assumed throughout. It is the purpose
of this paper to compile these examinations and to present them with the
belief that, in spite of the random nature of the subjects considered,
the results may be of interest to those who are conducting hypersonic
studies in helium or are concerned with the simulation conditions for
two gases with different ratios of specific heat. The discussion is in
two parts; the first part deals with inviscid flow and the second part

with viscous flow.2

In some of the results that are presented, more significant figures
have been retained in the value of a parameter than is warranted by the
accuracies of the approximations. In such cases the intent is to bring
out certain aspects that might otherwise be obscured; for example, one
is to show that the variation of a parameter with a variable occurs
smoothly.

SYMBOLS

A,B constants in equation (119)
half height of body

[0y

2Subsequent to the completion of this paper, the book "Hypersonic
Flow Theory" by Wallace D. Hayes and Ronald F. Probstein was published
by Academic Press, Inc. (New York), and is now available. This work
includes results similar to some of the results presented herein and
affords several additional comparisons of air and helium, as well as
some discussions of vy effects and hypersonic approximations that are
pertinent to the contents of this paper.
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Cp drag coefficient
Cy average skin-friction coefficient
Cy, lift coefficient
Cx normal-force coefficient
Cp pressure coefficient
c chord
D diameter
d detachment distance
g constant in equation (119)
K similarity parameter, M5 or M; Av
K4 constant in incompressible skin-friction laws
k density ratio across bow shock, pq/pp
L/D lift-drag ratio
1 length measured from leading edge
M Mach number
_ Pt
i PraxPmax
~ _ P
N Reynolds number exponent in incompressible skin-friction laws
Ny Knudsen number

linear viscosity coefficient

Prandtl number



N, molecular speed ratio

P static pressure

Py stagnation pressure

&p =P - Py

q dynamic pressure

R Reynolds number, based on free-stream condition unless other-

wise specified

r radius of curvature of nose
Tq radius of curvature of shock at axis
S area
T temperature
T* reference temperature
t leading-edge thickness
U=r %%<§9§5>_l/2
max
Ul=%%-x‘l
Uz%g—:
b=l
u local velocity
\' velocity
W weight

X distance parallel to body surface

P



Fog o

Yy distance normal to free-stream direction and measured from
plane of symmetry
R
o angle of attack
B Sutherland's constant
V4 ratio of specific heats
ANY expansion angle
s] two-dimensional turning through an oblique shock, or flow
deflection angle
Be flow deflection angle at edge of boundary layer
ol displacement thickness of boundary layer
€ shock-wave angle
0 seminose angle
A sweepback angle
M viscosity
p* viscosity corresponding to T*
p density
o= gflg for Ry = Ry
CF,A
@ = 90° - B
7 = M2iC
VR
¥ =% tan A
w exponent in power form of viscosity law
Subscripts:
1 free stream



2 behind shock, or local conditions

A in air

detach detachment

f final value after Prandtl-Meyer expansion
H in helium

i incompressible

1 local inviscid condition

max maximum value

A prime indicates the sonic point.
DISCUSSION

Inviscid Flow

Preliminary considerations.- Although there is general agreement
that the so-called Newtonian simulation argument is more paradoxical
than conclusive, it occurs so often in discussions of air-helium simu-
lation problems that some mention of it appears to be in order before
discussing the effect of the ratio of specific heats.

The Newtonian simulation argument stems from the fact that the
simple Newtonian theory for predicting the pressure coefficient at hyper-
sonic speeds, that is,

Cp = 2 £in28 (1)
has within certain limits of application shown sufficient agreement with
experimental results in air to receive general acceptance. As is well
known, this expression can be developed either by setting 7 =1 and

M; = » in the exact shock equations or by mass impact considerations.
Since this latter method does not involve 7y, the interpretation leading

to the Newtonian argument is that equation (1) is independent of 7y

effects and, thus, that if it is satisfactory for even restricted use in
air, which it seems to be, then it should be satisfactory within the same
restrictions for all values of 7y, not only 7y = 7/5. Hence, the Newtonian
simalation argument is that the effects of ¥ on the pressure coefficient
are negligible for all conditions where Newtonian theory has given satis-
factory results in air and, consequently, that for these conditions simu-
lation is not a problem when gases having different values of 7y are used.

oo g N ]



I

Although this argument has some merit, it is difficult to accept
without reservation. Basic factors such as the effects of ¥ on the
accuracy of hypersonic approximations, examples of which will be given
in the following section, are sufficient cause to examine further the
effect of 7y 1in the air-helium simulation problem.

Examples of effects of 7 on accuracy of hypersonic approximations.-
In reference 19 the effect of 7 upon the accuracy of the predictions of
several hypersonic approximations has been examined for the case of K o5 «,
where K 1is the hypersonic similarity parameter M;5. The predicted quan-

tity in this examination is the limiting value of the initial pressure
gradient on plane and axisymmetric ogives. The approximations include the
tangent-wedge and tangent-cone, Newtonian, and shock-expansion approxima-
tions. The results for the plane ogive show (ref. 19) that for 7y = 5/3
all the approximations give good predictions of the limiting value of the
initial pressure gradient and have the same order of accuracy. As 7
decreases from 5/3 to 1 the tangent-wedge and shock-expansion approxima-
tions become less accurate and introduce significant errors below 7 of
the order of 7/5. The tangent-wedge second-order approximation and the
Newtonian-plus-centrifugal-force approximation give good results for all

values of y 1in the range 1 s y < 5/3. For the axisymmetric ogive the
limiting value of the initigl pressure gradient is predicted very accu-
rately by the Newtonian-plus-centrifugal-force approximation for all values

of 7 in the range 1Sy $5/3. For 7y = 5/3, the shock-expansion
approximation gives good results and the tangent-cone approximation gives
fair results; but, as occurs for the plane ogive, these approximations
become less accurate with decreasing values of 7y and experience signif-
icant errors below values of 7y of about 7/5.

The excellent predictions by the shock-expansion method at large
values of ¥ and the poor predictions at small values of ¥ arise
because a high order of accuracy for this method requires that the expan-
sion waves generated at the body surface be almost entirely absorbed by
the shock wave. In reference 20, this was shown to occur for vy = 7/5
up to values of & near those producing shock detachment, and subse-
quently in reference 4 it was shown to occur to an even greater degree
for 7y = 5/3. This improvement with increasing 7y 1is compatible with
the explanation given in reference 19 for the inaccuracy of the method
as 7 —»1; that is, as 7y -1 the reflected waves from the shock become
nearly as strong as the expansion waves from the body.

The foregoing results show sufficiently large effects of ¥y wupon
the accuracy of hypersonic approximations to warrant an examination of
the effect of 7y wupon the pressure coefficient given by certain approx-
imations for the simple case of an inclined flat plate. First, consider
the Newtonian approximation, equation (1), at M} = = where it should



best apply. A comparison of Newtonian theory with the exact theory is
shown in figures 2(a) to 2(d) for M; = o and for values of 7y of 1,
6/5, 7/5, and 5/3. As 7y increases from 1, where Newtonian theory is
exact, this comparison shows Newtonian theory to become increasingly
inaccurate (5 << 1 excluded). For example, as 7y increases from 1 to
5/3, an accurate prediction would require the constant in Newtonian
theory to increase from 2 to about 2.7, or about 35 percent. This sig-
nificant error in the use of Newtonian theory at large values of 7y for
inclined flat plates is in marked contrast to the success of Newtonian
theory for the slender axisymmetric surface, for which reference 19 has
shown that the same increase in 7 would require the constant in
Newtonian theory to increase from 2 to about 2.1, or only about 5 per-
cent. Thus, when 7 deviates appreciably from unity, Newtonian theory
experiences considerably less error in applications to cones and slender
bodies of revolution than to two-dimensional surfaces. For gases with
large values of 7, such as air and helium, the previously mentioned
Newtonian simulation argument is therefore seen to be restricted to slen-
der bodies of revolution, for which it may be reasonably appropriate.

Some of the reasons for the inaccuracies that have been shown for
Newtonian theory lie in the implication of this theory that the shock
wave is coincident with the body surface, that is, (e - &) = 0. For
both cones and wedges, for K >> 1 it may be shown that
(e - 8) = (Constant)d(y - 1) where the constant of proportionality is
1/2 for wedges and l/h for cones. Thus, the greater the value of 7y
the less the Newtonian condition of (e - 8) = O is satisfied. This
condition is also more nearly satisfied by cones than by wedges in that
the value of (e - 8) for cones is indicated to be one-half that for
wedges.

Consider next the tangent-wedge approximation. For large values
of My and small to moderate values of B, the shock equations may be

simplified to yield (as in ref. 19, e.g.)

el + 1 y + 1\° 1
Cp,g—es M +\/(h>+K2 (2)

This approximation is known to give values of Cp 2 that agree closely

with the exact values. For K >> 1, the tangent-wedge approximation
reduces to

Cp,2 = 8°(y + 1) (3)

M~ e -
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Since this approximation should also give the best predictions at K = o,
it is of interest to consider first the accuracy for the ideal condition
of My = ». Accordingly, curves given by this approximation are also

shown in figure 2. The values of & and Cp,2 for detachment at

M} = » are shown in the figure and are given by the approximations

Bdetach = tan™t —L— ()
72 -1

and

Gb:e)detach = % (5)

which are exact for M) = ». Comparison of the tangent-wedge prediction

with the exact curve shows that this prediction is notably poor at 7y =1
for other than small values of & but improves with increasing values

of 7y and excels the Newtonian prediction as 7y exceeds the order of
6/5. The improvement with increasing values of ¥ 1is shown in figure 3
in the form of percent error. The very small errors at low values of B
are compatible with the assumptions under which the approximation is
derived. For 7y = 7/5 (air) and 7y = 5/3 (helium) the errors are not
large even near shock detachment.

The deficiency of the tangent-wedge approximation at 7y =1 and
M} = « can be eliminated completely if 82 1is replaced by sin25. This

obvious modification, coupled with the form of Newtonian theory, gives
rise to the observation in the literature that in the limit of y =1
and M; = » Newtonian theory may also be expressed as

Cp,2 = (v + 1)sin®% (6)

and that this expression is in close agreement with exact theory for
y=7T/5 and My >> 1. (See, e.g., ref. 21.)

The preceding examinations in this paper imply that equation (6)
may be quite useful for 1 < y < 5/3 for as shown in the discussion of

Newtonian theory, the value of Cp,g/sinza in this application must

vary appreciably with 7y; the results given in figure 2 for tangent-wedge
theory and Newtonian theory imply, in relation to exact theory, that the

desired varistion of Cp,g/sinea is, at least for M} = «, closely approx-
imated by the tangent-wedge variation of (y + 1). Equation (6) may thus be
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regarded as a modification of either Newtonian or tangent-wedge theory;
it will be referred to herein as flat-plate-modified Newtonian theory to
associate 1t with, and at the same time distinguish it from, blunt-nose-
modified Newtonian theory to be discussed in a subsequent section. It
should not be used to predict pressures on a blunt nose or for values

of B beyond those producing shock detachment. In this regard, blunt-
nose-modified Newtonian theory should not be used to predict pressures
on inclined flat plates until values of 8 near those producing shock
detachment are exceeded.

The predictions given by equation (6), again under the ideal condi-
tion of M; = o, are shown in figure 2 for comparison with the other

results, and the percent error is shown in figure 4. The predictions of
equation (6) experience a small loss in accuracy with increasing values
of 7, but the errors, in general, remain small except very near shock
detachment for 7y = 5/3.

Thus, in the ideal limit of M; = , equation (6) gives better pre-
dictions than equation (3) except for values of & within about 7° of

shock detachment for 7y = 5/3. If the term 7—;—% sin*® 1s added to the
7

right-hand side of equation (6), the predictions are in essential agree-
ment with exact theory, except near shock detachment when 7y > 1.

For the Mach number range in which most of the published experimental
work in helium has been done (i.e., My = 20) the relative positions of

the curves and the values of pressure coefficient shown in figure 2 are
representative. Only the curve for exact theory 1s affected by the value

of M; and in the range 12 S M S ® the change in pressure coefficient
with M} is very small (of the order of 0.01 to 0.02 except near shock
detachment). Although this change has only a minor effect on the error
curves at large values of &, its effect at small values of & 1is signif-
icant, as would be expected. This effect is illustrated for air and
helium in figure 5 as a function of the similarity parameter K where

the percent error in pressure coefficient at My = 20 1s shown for equa-

tions (3) and (6). These results show that the use of these equations
for pressure predictions in the range 1 << My << = should be restricted

to K 2 3. This restriction includes the prediction of pressure ratio
p2/p1 by means of these equations; the percent error in pressure ratio

is in very close agreement with the percent error in pressure coefficient
for K 2 3 and does not differ from the percent error in pressure coef-

ficient by more than 5 percent until K S1. At very small values of &

the large percentage errors shown in figure 5 have little practical sig-

nificance in view of the very small values of pressure coefficient. (See
fig. 2.)

= &
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For the lower range of Mach numbers that are generally considered to
fall within the hypersonic speed regime, another effect of 7y may become
significant. In order to illustrate this, both equations (3) and (6) may
be regarded as special forms of the exact expression

_ 4 sin®e _ L

Cp,2 = (7)
P, 7+ 1 (y + l)M12

in which the second term on the right has been dropped. The value of
Cp,g is less affected by the logs of this term when 7y 1is large.

The preceding examples show that the value of 7y and the configu-
ration shape may have an important effect upon the accuracy of hypersonic
approximations and that it may be desirable to use one expression for
certain configurations and values of ¥ and another expression for other
configurations and values of 7. The interest here is in the higher
values of 7, specifically vy = T/5 and 5/3, where, with the exception
of equation (1), the differences between the accuracies of the hypersonic
approximations appear smaller, and where most of the approximations give
the best predictions. The exception offered by equation (6) is minor
since the error in its prediction for the largest value of 7y 1is small
until shock detachment is closely approached.

Differences between air and helium in changes across an oblique
shock.- Preliminary insight into some aspects of alr-helium differences
and of the air-helium simulation problem may be gained by examining the
changes that occur across an oblique shock as a function of the similarity
parameter. From equation (2) the pressure ratio across an oblique shock
at hypersonic speeds is given satisfactorily by

b 2
o142l t1, (7+1) y 2 (8)
P Y 4

Other changes across an oblique shock may be obtained by the following
exact expressions:

b2
+ 1l)— + -1
o (r )Pl (v - 1)

EI = D (9)
(7-1)5?-+ (y + 1)
1
Tp _P2f1 (10)

T]_ - Pl 02
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<v_2>2 L 252[<§f'>2 ] ] (1)

K2 [(7 + 1)p—2+ (y - 1)]

Py

-1/2
Mp _ Vo(Tp\/ (12)
M I\

The results given by equations (8) to (12), with the aid of equation (2),
are shown in figures 6 and 7 for air and helium for values of K from
0.1 to 10. Only the curves for & = 0.2 and & = 0.4 have been illus-
trated in figure T7; the left-hand 1limit of these curves is determined by
the Mach number for shock detachment for these values of &.

For K2 3 the following spproximations are useful:

Py y(y + 1)K

Py 5 (13)
2. 1 (14)
Pr 2-1, 2

Y+ 1 y(y+ 1)K°
T _ 7(y - VK® (15)

V_2. = \’l - 762 (16)

—= = (17)

e
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For the same value of K in helium and in air) (i.e., Kg = Kp) the
ratio of the pressure rise across the shock in helium to that in air is,
therefore (for K £ 3),

Pi/g _ ra(m+ 1)

(23) 77

1.32 (18)

For K>>1 and Kg = K,, the following ratios are obtained. The
density-rise ratio is

+1 -
- (7 ) (7 1) = 0.67 (19)
Y - 1/g\y + L/
The temperature-rise ratio is

(=)
1y rglrg - 1)

(%_)A ETXCTEE)

= 1.98 (20)

The velocity-drop ratio is (for small to moderate values of &)

=1 (for any two values of 7y) (21)

The Mach number drop ratio is (for small to moderate values of &)

5The subscripts H and A will be used to denote helium and air
specifically, but note that the general expressions that are given in
terms of ¥ are applicable to any two ideal gases having different
values of 7.
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= 0.71 (22)

The foregoing results show that most of the changes across an oblique
shock at hypersonic speeds are significantly different in helium from
those in air. Equations (8) to (17), and curves such as those shown in
figures 6 and 7, may be used to establish the conditions for the air-
helium simulation of the change in a given property across an oblique
shock by determining the required ratio of Kz to Kp. 1In the following

section the simulation conditlons associated with the pressure rise across
an oblique shock will be examined in detail. The simulation conditions
for other changes across the shock may be derived in a similar manner.

Simulation of pressures and normal-force coefficients on a flat
plate with zero sweep.- In the derivation of the simulation conditions,
the use of the same hypersonic approximation for the two values of 7y
involved is, of course, preferable if the values of 7y are such that
the accuracy of the derived simulation conditions is not significantly
affected. In the previous discussions of the 7y effects upon the
accuracy of the hypersonic approximations, equation (3) was noted to
give, in general, slightly better predictions of pressure coefficient
than equation (6) for 7 = 5/3 (helium), the converse being true for
y = 7/5 (air). However, for either of these values of 7, the error
in pressure coefficient introduced by the use of either equation for
K Z 3 remains below 10 percent until the flow deflection angles become
of the order of those for shock detachment. In addition, neither equa-
tion appears to offer a significant advantage over the other in the
accuracy of the simulation expressions that are derived; the simulation
conditions are developed as a ratio of the value of a parameter in
helium to its value in air, and, as will be illustrated subsequently,
the value of this ratio is less sensitive to the choice of equations
than are the wvalues that form this ratio. Thus, the use of the same
equation for helium and air appears permissible. In the derivations
that follow equation (3) has been used because it yields simpler simu-
lation expressions. The changes in these expressions that would result
from the use of equation (6) instead of equation (3) may be readily
evaluated since they would usually amount to no more than replacing &
by sin b®.

At hypersonic speeds the normal-force coefficient on a flat plate
is for all practical purposes determined by the pressure on the high-
pressure side of the plate. Thus, if the normal-force coefficient Cy

O &



15

in a gas with a certain value of 7y 1is to equal that in a gas with a
different value of 7, then a sufficient condition iS/that the pressure
coefficient Cp on the high-pressure side of the plate must be the same

in the two gases. Thus, for CN,H = CN,A it follows from equation (3)
that the condition for simulation is

oy [a+1

5 V’H’“ 1

(23)

Thus, for the same normal-force coefficient Cy in air and helium the

angle of attack in helium should be 0.949 times that in air,h and this
factor is independent of K for the conditions of this analysis (K >> 1).
It should be noted that, while equation (3) introduces large percentage
errors in Cp,2 for K < 3, the percentage error in BH/BA that is

incurred by use of equation (23) for K S 3 1s small. In order to illus-
trate this, values of B8y/8y have been computed by means of equation (2)

and are given in the following table:

X oH/5a

0 1
1 .997
.5 .984
1 .972
3 .95k
10 .949

It is apparent that equation (23), and other simulation expressions that
will be derived from eguation (3), may be used for values of K consid-
erably less than 3 without introducing large error. Of equal importance
is the implication that for K << 1 air and helium give essentially the
same value of Cpy; this is compatible with the result of linear theory

that Cp,g is independent of 7y, as will be illustrated subsequently in

the section entitled "Lift-drag ratio." The prediction of equation (23)
is in good agreement with the value of 0.952 determined in reference L

qu equation (6) had been used in this development, the factor 0.949

sin by

would equal However, the ratio BH/SA would obviously be little

sin SA
different. For example, with &j = 30°, the value of BH/BA would be

0.943 or less than 1 percent different from the value obtained by use of
equation (3).
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at Mach numbers of 12, 16, and 20 by shock-expansion calculations. Note

b P
that equation (23) does not make (—g> = (Ji\ .
H

Pl P1/p ¥
N . P2 P2
If it is desired to have only (~=| =|—-=], then both M; and ®
Pl/g  \P1/a

become variables in the simulation problem. From equation (13) the con-
dition for simulation is

(24) L
4
1
For air and helium, N
o) M
A _o.87 A (25)
B My,u
thus offering a number of reasonable combinations. If M; p =M 4,
) J
then the angle of attack in helium should be 0.87 times that in air for -
P
simulation of 32_ only. (Note that Kgy[Kp = 0.87.)
1
P b
If it is desired to have |—=) = (2] and Cy = Cy p simul-
Py H P A ’ )
taneously, then two conditions must be satisfied. One is given by
equation (23). The other condition is (substituting eq. (23) in eq. (24))
7
Sl’ﬁ N (26)
1,A T
For air and helium then, the angle of attack in helium should be about
0.95 times that in air, and the Mach number in helium should be about
0.92 times that in air for simulation of Pg/Pl and Cy simultanecusly.
Another condition of simulation which may be of interest is to have
M
C =Cyp and &y = 5,. An examination shows that the values of _L,H -
N,H ’ H™ "A 1,A
J

necessary for this simulation cannot be evaluated accurately by the use
of hypersonic approximations, although trends may be established which
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M
show that ﬁllg becomes increasingly large as SMl A increases.? This
1,A 4 '
inaccuracy should not be interpreted as a significant deficiency of
hypersonic approximations, since it is caused by the very small effect
that large changes in M; have upon CyN at a given value of & when

My >> 1. Accordingly, small errors in Cy may show up as large errors
M
1,H

in g=2=. To this end, it may be shown from equation (3) that, for
1,A
By = da»

CNLH ) gt l

CN’A 7A+l

(27)

which shows that, provided K >> 1, CN H will at most be only about
J

11 percent greater than CN,A when simulation is disregarded altogether.6

Thus, this form of simulation is not so unattractive as the values of

M

MELE for simulation might first imply, in that by a selection of a rea-
1,A

sonable value of 1,8

(although this value may be far from the exact

2
value) CN g may differ from Cyj , by only 1 percent or so.
2 2

Simulation of normal-force coefficients on thick flat plates.- In
reference 4 a study was made by shock-expansion theory to determine the
values of the ratio of angle of attack in helium to that in air necessary
to give CN,H = CN,A for two-dimensional 10-percent-thick plates with

wedge and parabolic leading edges. The leading-edge half-angle 6 was

JExact calculations for a flat plate at 6° angle of attack show that

M
“LH ys about 1 at M; 5 =10, 1.1 at M, = 16, and about 1.k at
™ 1,A 1,A

b4

M
My p=25. At a =120, 2 i5apout 1.7at My, = 12.
2 l,A s
6For My g =My p and conditions compatible with equation (27), the
YTy + 18
shock angle is given by e =Lt 1lgs. 7 L - S - {
g given by 5 o} hus, €H/€A 7a + I 5, which for

By = 8, gives the same result as equation (27) (i.e.,

€g €p = CN,HICN,A = l.ll). Note, however, that the simulation of shock
o _7at?l
5p m + 1
® ratio for simulation of Cp. (See eq. (23).)

angles requires that and that this is the square of the
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varied from O° to 30° for the wedge-nose plates; for the parabolic-nose
plates, leading-edge half-angles of about 11° and 24° were examined for
comparison with the results for the wedge leading edge. The calculations
covered Mach numbers of 12, 16, and 20. The ratio “H/“A determined by

these calculations is shown in figure 8. All the results fall essentially
on a single curve; it would therefore appear reasonable to regard this
curve as applicable for Mach numbers of the order of 10 and greater. It
is interesting to note that within the restrictions of this study, nose
shape (parabolic or wedge) has no effect on “H/“A when the angle at the

leading edge is the same.

With respect to the decrease in aHﬁJA with increasing 6 shown

for these thick plates, tangent-wedge theory indicates that for slender
wedges with a < 6 the ratio “H/“A is independent of 6 and is equal
Tt 1l

7+ 1’ or 0.90 (for 6y = 8p). However, for slender wedges with
A

a > 6, the effect of 6 1is qualitatively the same as that shown in
figure 8; tangent-wedge theory yields (for 6y = 6p)

oy _ (1&)1/ ° hed)-= (28)

to

G.A 7H + 1 CLA CLA

or

H

)
" 0.949 - 0.051 o (29)

Jhus, within the applicable limits of éL (i.e., 0 § gx'g 1) increasing
A

6 at constant o reduces “H/“A from its flat-plate value. For
example, with ap = 8.5° and therefore 6 < 8.5° the variation of
“H/“A with © given by equation (29) is about the same as that shown
in figure 8.

Simulation for flat plates or wedges with sweep.- In reference 22,
expressions have been developed for obtaining the pressure associated
with sweptback, attached, oblique shocks and flow deflections at hyper-
sonic speeds. These expressions may be used to obtain simulation condi-
tions for different values of 7. Only the case of M; —» « 1is considered

herein.

o
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From reference 22,

C

p,2 _ 2 l+l‘Vl‘(72'l)‘V2

5° 1+ Wg (y + 1)y

(30)

where ¥ 1s the flow-deflection—sweep parameter and is equal to & tan A
(A 1is the angle of sweepback).

For zero sweep (y = 0), equation (30) reduces to equation (3). For
maximum sweep (i.e., detachment) Ypax = (72 - 1)'1/2, and the pressure
coefficient for . . 1is (ref. 22)

2 1
Cp,o = 28 (7 - 7) (31)

In figure 9 curves calculated from equation (30) for helium and air
are presented. These curves may be used to obtain simulation of Cp’z

and, therefore, of Cy for swept flat plates at angle of attack or for

swept wedges when the low-pressure side of the wedge 1s at zero angle of
attack or operates in the "hypersonic shadow." For example, the ratio
8y[dp for (Cp,2)ﬁ = (CP’Q)A and Yy = ¥, may be obtained from the

curves; this ratio is also given by the relation

SHY L , (32)
Bp 7A+l(7H+l)W2+l-ql-(7H2-1)W2

(5}1)2 g+ ()R- \[1 - (74 - 1)y2

which for zero sweep reduces to equation (23). Note that when simulation
is achieved with Vg = Vas the relation between sweep and angle of attack

is
S} tan A
H_Z A (33)
5p tan Ay

Consequently, for the simulation with Vg = Va, neither the angle of

attack nor the sweep angle can be the same in helium as in air. Figure 10
gives the ratio 5H/5A for this simulation; there is no large variation

in the value of 5H/5A for simulation until detachment is approached.

It should be noted, however, that within detachment limits it is impos-
sible to obtain values of ¢ in helium as high as those that can be



20

obtained in air. (See fig. 9.) Equation (4) may be used to show that
the value of &y for detachment is about 0.81 times the value of &,

for detachment.

The condition of having neither & nor A the same in air and
helium may not be desirable in some studies. It may be preferable to
have Ay =Ap or &y = 8j, in which cases yy # y,. Consider first

the case of equal sweep angles Ag = Ap. Observe that when gy # ¥a
and Ay = Ap, the following equation results:

] o}
. B (34)
Vo Ba
The condition that (CP,E)H = (Cp,2)A may be written as
C L (c
2 (°p,2)g 2| p,2),
from which it follows, with equation (34), that
2 (C Bp°
¥ p,2 / A
i o2y (36)

7y (CP,2)H/6H2

This expression for simulation is chosen since it facilitates the use
of the results obtained from equation (50) and shown in figure 9. For
demonstration, consider that the angle of attack in air and the sweep
1 known. Thus = tan A i i C . t
angle are known us, Y, =%, tan A, is known, as is ( Pr2)A I

is desired to know BH/BA for the simulation of Cp,2' Since the value

2| %12),
of the parameter V,“|———=—| is known, it is sufficient to determine

B
the value of vy that will give the same value of this parameter in
helium. By use of equations (30) and (36) an expression relating vy

to the known quantities can be obtained; however, the expression is
cumbersome to use. A more convenient method is to use the results

C
given in figure 9 to plot curves of ¢2 _Eég as a function of . This

o)
has been done in figure 11. From these curves the angle-of-attack ratio
(see eq. (5&)) can be obtained by noting the values of { that correspond
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c VH OBy
to a given value of ¢2 P 2. For helium and air the ratio — = —

82 c Vo By
is given in figure 12 as a function of ¢2 _2;2. Again, the variation

52
in SH/BA is not large until detachment is approached; therefore, an
average value of BH/BA taken over a given range of interest for

C
2 pé2, which equals Cp,2 tanzA, would give reasonable simulation,

\Z

provided that the range is not too large. Also, as before, it is impos-

c
sible Wwithin detachment limits to obtain values of ¥ or 2 -Bzﬁ with

o)
helium as high as those than can be reached in air. (See fig. 11.)

For the case of WH # WA and SH = SA the ratio of the sweep
angles AH/AA may be obtained by noting that in this case

EE ) tan A.H

— (37)
WA tan AA
With this relation the curves of figure 9 may be used to show that
tan A
iitiele S P always greater than unity; that is, the sweep angle must be
tan Ap
larger in helium than in air for this method of simulation. The curves
of figure 9 also show that this method of simulation is more restricted
than the other methods in the range of § and Cp/82 that it is able

to cover.

Although certain areas of restriction have been pointed out in the
above simulations, it is well to bear in mind that partial simulations
in the direction indicated may often yield adequate results, since with
no simulation (i.e., 5y = dp, Ny = Ap, and, therefore, Vg = WA) the

C

p,2

§2
than that for air at ¢ = O to about 15 percent greater at § = 0.6.

value of

for helium ranges only from about 11 percent greater

Drag coefficients for cones and wedges at zero angle of attack.-
Several approximations exist for the drag coefficients of cones and
wedges at hypersonic speeds (e.g., see refs, 19, 23, 24, and 25). These
approximations may be used to obtain the ratio of the drag coefficient
in helium to that in air. The expressions given in reference 19 have
been selected for this purpose since they give results that are either

the same as or slightly better than the results given by the other sources.
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The ratio of the drag coefficients for cones may be shown to be,
for GH = GA)

‘o _ [+ 1+ [- (r + 3)2 -] - 1.02 (38)
Cp,a (y + 3)2 . (r + 1)+ 7],

For wedges, with 8y = 8,,

c + 1

D,H _'H

=1.11 (39)
CD,A 7A+ 1

In figure 13 a comparison of these approximations with exact solu-
tions is presented. The fact that the exact solutions are for M; = 20

rather than M; = » does not significantly affect the assessment of the
C
approximations. The approximation of EQLE for cones is seen to be
D,A
generally better than that for wedges. From these results the drag coef-
ficients for cones may be concluded to be about 2 percent greater in
helium than those in air and the drag coefficients for wedges to be
some 11 percent greater in helium than those in air, unless the nose
angle comes within a few degrees of that producing shock detachment in
helium, or is very small.

The ratios shown in figure 13 may be used as correction factors in
interpreting helium results in terms of air results. The ratio for
cones is, except at large values of 6, sO near unity that it could
probably be neglected in many studies.

Since cone or wedge drag coefficients can be simulated in helium by
changes in the value of 6, an evaluation has been made of the magnitude
of the change required for CD,H = CD,A' Exact calculations at M; = 20
give the following results for Cp g = Cp at

M ’

6p, deg (GH/GA>cones (eH/eA)wedges

20 0.988 0.945
28 .987 .93k
3 .98k .919

e
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The ratio GH/SA is seen to be relatively insensitive to the value of

6p. Note that for the highest value of 6, considered, 6y 1is less
than 6, by only about 0.5° for cones and by about 2.7° for wedges.

The ratio of 6y[6y for Cp,i = Cp,p may also be obtained by use

of the approximations that yield equations (38) and (39). The value of
this ratio is about 0.99 for cones and 0.95 for wedges. These values
compare favorably with the exact values in the preceding table except
for wedges with large values of 8.

Simulation for blunt bodies.-

Preliminary remarks: The discussions thus far have dealt with con-
ditions associated with attached shocks and, therefore, with a configura-
tion with a sharp leading edge or pointed nose. Some of the air-helium
differences and simulation problems common to blunt bodies with detached
shocks will now be examined. One of the differences between air and
helium that is immediately apparent is the difference in the maximum

density rise across a normal shock (i.e., %% =6 for air and 4 for

helium/. Although this difference might be expected to cause significant
differences for M; >> 1 in such features as shock detachment distance,

flow fields, shock shape, and the like, it should not be interpreted as
implying that no simulation is possible in helium for Mach numbers in

p
air that give Eg > 4 or that the differences between air and helium

1
results are necessarily large. Adequate simulation of some of these
features can be achieved, particularly in local regions; when simulation
cannot be achieved, adequate transformation of the helium results to air
results is often possible.

Pressures across shock layer at axis of symmetry: Consider the
blunt nose at hypersonic speeds with detached shock as shown in the
following sketch:
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According to Newtonian theory7 the pressure coefficient at the
stagnation point Cp,max has a value of 2. However, better results are

obtained by use of the value of - Cp,max suggested in the blunt-nose

modification of Newtonian theory of reference 19, which for M; >> 1
reduces to 1—1—2, thus yielding as the blunt-nose modified Newtonian

7+ 1
theory

Cp = 2+ 3 gin2s (%0)
y+ 1

The value of Cp,max in this expression is satisfactory for helium as

well as for air even at moderate hypersonic speeds.8
Thus,
(Cp’max)ﬁ y+ 3\ [ry+1
C = ) ) = 0-951“ (l‘"l)
(Cpymax)y  \7 + 1/g\7 + 3/4

The pressure coefficient immediately behind the normal shock for
M; >> 1 may be shown from the exact shock equations to reduce to

c L

P2 Ty 41 (42)

TIn application to blunt and pointed bodies equation (1) may be

expressed in the more versatile form Cp = Cp max _Q;Q_Q__. For pointed

in28

bodies Bp,, 1is the surface angle at the nose, and Cp mex 18 the pres-

sure coefficient on the surface at this point (exact value of CP max
should be used). For blunt bodies (8p,, = 90°) this expression reduces
to equation (1) when the value of Cp max 18 the Newtonlan value.

8For exemple, at M) = 8 the exact value of Cp ,max 18 1.752 for

helium and 1.826 for air. Equation (40) gives 1. 750 for helium and
1.833 for air. When M; — =, the values of Cp,max given by

1 y

y+ 1 7-1 7-1
C =2]||L——= (7) are slightly more accurate than those
p,max 5

used in equation (40). The exact ratio of Cp,max in helium to that
in air, at M; = 8, is 0.959 (compare this value with eq. (41)).

e
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Thus,
(Cp,z)H _ 7y + 1 _
(prz)A 7H +1

0.90 (43)

From these results, the values of Cp through the shock layer along
the axis of symmetry vary from values that are about 10 percent less in
helium than in air just behind the shock to values that are about 5 per-
cent less in helium than in air at the stagnation point. Thus, hyper-
sonic studies in helium in this vicinity of a blunt nose will not be
subject to large differences in the values of the pressure coefficients
from those obtained in air. Corrections to helium results of the magni-
tude just indicated may be used to minimize these differences.

Shock detachment distance: The shock detachment distance d on
the axis of symmetry may be calculated by a number of methods. Although
the value of d appears to vary somewhat with the method used, the
ratio of dH/dA appears relatively independent of the method. (For

example, compare refs. 26 and 27.) The method of reference 27 will be
used herein for the nearly circular or spherical nose. For the two-
dimensional case this method gives

d k -1 1l -k
4K i (44)
where rg 1is the radius of curvature of the shock at the axis (taken

to be the same as that of the body for computations) and k is the
inverse of the density rise across the shock at the axis (i.e.,

k = 91/02)' For My >> 1, k = ;}i—%. The negative sign convention
for rg employed in reference 27 is not used herein. From equation (Lk4)

there is thus obtained for the nearly circular two-dimensional nose
(%)
rg H
(=)

The detachment distance for the nearly spherical axisymmetric nose is

= 1.35 (45)

2
a _ . |t- Jl - (1 - k)

a2 (46)
Tg (1 - k)2
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from which there is obtained

= 1.40 (47)

For flat-nosed two-dimensional bodies the detachment distance is
given by (ref. 28; this reference was unpublished at the time this paper
was prepared, but galley proofs were available to the authors through

the courtesy of Dr. R. W. Truitt) 1

(i)

Yy + 1

where a 1is the half height of the body. This expression yields for
M, >>1
1

=1.19 (L9)

This ratio may be observed to be equal to the ratio of the values of
7 for helium and air, but this appears to be a coincidence in that other
combinations of 7 that have been examined do not give this result.

For nearly flat-nosed axisymmetric bodies, reference 29 gives

-1
g _1.03,\|2 (50)
a 2
from which it follows that
€ 3
a Y =
H_o B _1.09 (51)
@, Ve
a/p A

These results show that the shock is always further removed from
the nose of a given body in helium than in air and that the difference
between the detachment distances in air and helium is greater when the
body is axisymmetric. It is thus evident that the duplication of detach-
ment distance in helium and air would require that the model in helium
have either a smaller radius of curvatuve, or smaller half height; than
the model in air. For most studies, however, the primary interest is

e
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directed toward simulation of conditions on the body surface. If these
conditions can be simulated, or if there is little difference between
air and helium without simulation, lack of simulation of detachment dis-
tance appears relatively unimportant. Some aspects of conditions at the
body surface will be considered next.

Pressure and Mach number distribution: If the pressure distribution
over rounded blunt noses obeys the blunt-nose modified Newtonian theory,
that is,

%

S = cos2Q (52)

P,max

where @ 1is the angle between free-stream direction and the normal to
the body surface, then the transformation of the pressure distribution
from one value of ¥ to another is readily accomplished by use of equa~
tion (hO). Note that so long as the ratio cp/bp,max can be expressed
as any function of body shape only, this transformation would probably
apply.

For Cp g =Cp p equation (52) shows that

cos @y
— 2 _1.023 (53)
cos P,

The following table gilves values of QH/QA for Cp,H = Cp,A as a func-

tion of @,. The minimum value of @, = 12.3° 1is that for which

(Cp,max)H = Cpa
since equation (52) is generally inadequate beyond about 550.

Values of ¢h beyond 50° have not been considered

Py, deg ¢H/9A
12.3 0]
15 592
20 .800
30 .922
Lo -959
50 .978

These results reflect the effect of the lower value of Cp,max
helium, in that a given value of Cp occurs at a position that is nearer

in

the stagnation point in helium than it is in air. Also, the difference
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between Py and Py for Cp,H = Cp,A decreases with increasing .
Note, however, that for cpH = CPA,

Cp,H _ (Cp,max)H

= (54)
Con (Coymen), ?

Consequently, for a given value of @, Cp,H is only about 5 percent
less than Cp . (See eq. (42).)

The Mach number distribution may be obtained from equation (52) by
noting that for M; >> 1l

cos®p = —E— (55)
max
It follows that y
- “y-1
cosztp = (l + 2—2-—1- M2) (56)
and
1
M2 = 2 -1 (57
7y -1 r-L
(cos2q) 7

For My to equal M,, the relation between @y and @ is thus

"H
-1 7A—l

(cosgcpA) 7

The following table gives values of q>H/q3A for My = M, as a function
of @y

cos Py = 1 + (58)

Ta
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Py, deg q)H/ Pp
5 1.090

10 1.089

20 1.084

30 1.073

4o 1.060

50 1.044

1/2
As @, approaches O°, % = (;—E)/ = 1,091, The value of clecpA is

seen to experience a small decrease as Py increases and may be con-
sidered essentially constant over a large portion of the nose.

For @q = @y the value of MH/MA is given by

i 7H_-]: 7A"7H

M\e (74 - 1\|]1 - 2¢ " 7%

(ﬁf) ) 14 Sl (COS )7A‘1 (coszqo § (59)
|1 - (cosch) 7A~

The following table gives values of My[My for @y = @y as a function
of ¢:

®, deg My My
5 0.917
10 .918
20 .919
30 .92k
10 .931
50 .940

My~ g
seen to experience a small increase as @ increases and may be con-
sidered essentially constant over a large portion of the nose. Both of
the preceding tables indicate that the differences in Mach number dis-
tribution between air and helium are small and that & given value of

1/2
As @ approaches 0°, My (Zé) = 0.917. The value of MH/MA is
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Mach number occurs at a position that is slightly farther away from the
stagnation point in helium than it is in air (the reverse of the behavior
of Cp). In this regard, equation (56) places the sonic point on the

body” at (the same result is obtained in refs. 27 and 30)

(60)

7+ 1

Y A
. ( 2 )2(7-1)
cos @ =

which yields @' = 45.8° and @' = 43.4°, or @H'/QA' = 1.055.

The results of studies of flat noses indicate, as might be expected,
that the surface pressure distribution in the vicinity of the stagnation
point is a function only of position and Cp pay. (For example, see

ref. 31.) Therefore, for a given position on the flat nose near the
stagnation point, the ratio of Cp,H to Cp,A is expressed by

equation (54).

Velocity gradient: The value of the velocity gradient is important
in skin-friction and heat-transfer problems. In reference 32 the velocity
gradient on a nearly circular blunt nose has been derived on the basis
of blunt-nose modified Newtonian theory. This result is referenced to

the pressure and density at the stagnation point, Pmax and ppgy, and
for M; >> 1 may be reduced to
—~1/2
- 2 /
P

Pma.x

) s

max

)

™

&8

where x

L

7-1

1 _[_p ) 7]
pmax

is distance parallel to body surface and r

(61)

is the radius of

of the nose surface. Substituting equation (55) into equa-

and rearranging yields

curvature
tion (61)

9The

sonic point on the shock ahead of a nearly spherical nose

occurs, according to reference 30, at ¢ =~ Jk. Thus, on the shock

+1

' 1/2
CPH = (7 -1 (7 = 1-23.
@A' y+ Yyg\ry - 1/a

e
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-2 q1/2
- Y
_ _EEE)—I/Q _ 2(1—;—£)(0052¢9 (l - c082¢0 (62)
Ax \Ppax =L
l- (coszqa 7 |

With U representing the left-hand side of this equation, the following
table gives the ratio UH/UA as a function of @, for @ = @p:

P, deg Ug[Un
> 0.999

10 <997
20 .989
30 975
Lo <955
50 .926

At the stagnation point (¢ = 0°), the value of U 1is independent of 1y
and is equal to {5 (ref. 32). Thus, when the velocity-gradient parameter
is expressed in the form of U, these results show that there is essen-
tially no difference between air and helium .over a large portion of the
nose. At the sonic point on the nose
1/2
Y 7-2

y + 1 2 V-1 2 \7-1
2( y ) - (7 + 1) (7 + 1) (63)

from which Uy' = 1.377 and Up' = 1.458, or UH'/UA' = 0.944, (Recall
from eq. (60) that the location of the sonic point in helium is farther
around the body than it is in air, but only by about 2.4° in @.) These
values illustrate, by comparison with the value of |2 at the stagnation
point, an interesting result of equation (62), namely, that whereas for
air the value of U increases as ¢ increases, for helium the value

of U decreases as @ increases.lo As shown, however, the differences
in U between air and helium are still small at the sonic point.

<
I

10For y near 1.54 there is little change in U with @ over the
range of ¢ considered herein, 0° < ¢ g 50°.
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It is of interest to compare the preceding results with those given
by another much-used form of the velocity-gradient parameter as given in

reference 19 for a rounded nose. For this comparison only the stagnation

point will be considered. This parameter will be denoted by U to dis-
tinguish it from U, and for M; >> 1 the value at the stagnation point

for a two-dimensional or axisymmetric nose is given by

32D du_2(y+1) (64)

Ve & \]7(7 -1)

where D 1is the diameter of the nose and u, 1is the axial velocity
Jjust behind the shock wave. The ratio ﬁH/fJ'A is thus 0.789 and is not

to be compared with the ratio UH/UA =1 given by equation (62) for the
stagnation point because of the difference in the reference quantities.

Both U and U may bg referenced to free-stream conditions as
follows. First, consider U. Conservation of mass across the shock
requires that pju; = pou,. For M; >>1, pl/p2 =k = u2/ul. Thus,

ﬁl-Ddu_Dduk=2 y -1 (65)

Therefore, with U referenced to free-stream velocity,
1/2
Y-l
= <H _é> = 1.183 (66)

Next, consider U. With the aid of equation (40), the density ratio k,

1Y
y 2L

and the relation u; =M
1 1 Py

, there is obtained, for Ml,H = Ml,A’

_pmm>11ﬁ
( H _ULEfrp 1 (7 * 3)(71{ - 1) 1/2 )
(pmax UlL,A\rg + 1 (7A + 5)(7A - 1)

i

o
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Since at the stagnation point g% =1, equation (67) shows that, with
U

U, denoting reference to free-stream velocity, ﬁlzg = 1.197. This
1,A

value agrees closely with the result of equation (66). Thus, the two

expressions for the velocity gradient that have been considered give

the same result within the accuracy of the approximations, at least at

the stagnation point, if the same reference quantities are used. When

referenced to free-stream conditions, the velocity-gradient parameter at

the stagnation point is greater in helium than in air. However, the

necessary change in D or wuj for simulation is easily obtained from

the results that have been presented.

The preceding conclusions also apply to the stagnation point for a
nearly flat nose, for which the results of reference 31 may be used to
show that

N 1/2
Uy,n ) [k(2 ) k)]H / (68)
U]_,A [k(2 _ k)] Al/2
or
u 7 - 1O+ 3) (7 +1)2 o2
LE_ jllr -1y +3 7+ = 1.197 (69)

e || 02 Gl - VO3]

Thus, the value of ﬁl H/ﬁl,A at the stagnation point is, within the
b4

accuracy of the approximations, the same for rounded and flat noses.
(Compare with eq. (66) and the value of Ul,H/Ul,A-)

Mass flow along surface: Another important quantity in studies of
aerodynamic heating, coolant effectiveness, and the like is the inviscid
mass flow pju; along the surface (at the outer edge of the boundary

layer). From Newtonian theory, reference 33 gives the ratio of local
mass flow Jjust outside the boundary layer to the free-stream mass flow
as

7=1 1/2 y+1l 1
4

(7 + 1)7-1 2 >7 7-1
2 y -1
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The following table gives values of mass-flow ratio Ei H/al A 8s a
function of o: ’ ’

9, deg ml,Hl T1,A
5 0.811
10 .814
20 .820
30 .832
40 .848
50 875

As @ approaches Q°, ﬁi,H/ﬁl,A = 0.810.

Since the maximum value of Pyu; occurs at the sonic point, the

value of the mass-flow ratio at this point is of interest. Equation (70)
yields ﬁﬁ_Hlﬁi p = 0.860. These results show that for the same free-
b 3

stream mass flows, the local mass flows on the blunt nose are signifi-
cantly less in helium than in air. In other words, (plul)H must be

greater than (plul)A to achieve simulation of local mass flows on the

nose; for simulation at the sonic point (plul)H/(plul)A must equal

about 1.16. With respect to simulation, the preceding table shows that
El,H/al,A experiences small changes with .

The local mass flow, like the velocity gradient, is often refer-
enced to PnaxPmax* In order to illustrate the differences that result

when the local mass flow is referenced to ppgxPmax instead of Pyuy,
the sonic point will be used. Reference 32 gives

+1
p.'u.’

m' = b __ - {7( 2 >2(7-1) (71)

pmaxpma.x 7+ .

from which mH'ImA‘ = 1.061. This result may be transformed, so that
Py is the reference quantity, by the relation

(Pnaxinax )y R (plul)H[(7 + 3) (7 - l) ]l/z
H A

(Pmaxpmax)A ) (plul)A 7Y -1l/g\7 +3

(72)
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This transformation changes the value of 1.061 to 0.847., This latter
value is in essential agreement with the value of 0.860 obtained by use
of the results of reference 33 (eq. (70)). Note that for simulation of

local mass flows (pmaxp )H must be less than Gﬁmxpmax)A; for simu-
PmaxPmax

lation at the sonic point ( )H must be about 0.89 (from eq. (71)).
pmaxphax)A

Induced pressures and shock shape from leading-edge blunting.- In
reference 34 the downstream influence of a two-dimensional blunt leading
edge in inviscid hypersonic flow has been derived by use of first-order
Planar-blast-wave theory. The constants in the equations for the induced
pressure and shock shape are given for air and helium. From these results
the condition for the induced pressures to be the same, that is, for

CQE) to equal eg) , 1is
le plA

[o . 169CD2/ Sy, 2 (%) -2/3} . [o . 11201)2/ o, 2 (%)-2/31] . (73)

where t 1is the leading-edge thickness and CD is the nose drag coef-

ficient. In the following example the leading edge may be taken to be
of any shape so long as its drag coefficient may be represented as the

product of Cp max = 7+ 3 and some factor that is a function of shape
) ry+ 1

only (e.g., for a flat-face leading edge Cp may be taken as %;t—%;
+

for a cylindrical leading edge Cp = % ;—:%) For this family of two-

dimensional leading edges, equation (73) yields as the simulation
requirement
x) 1/3

A

M T
_LH _._( = 0.827 (%)

MlA(a)

>

t/H

The three variables involved offer several approaches for simulation.

For example, if Ml,H = Ml,A and tg = tp, then xg = 1.77Xa; in helium
a given induced pressure Ap/pl from leading-edge blunting will occur at

a station that is farther rearward than it is in air. In order for the
same induced pressure Ap/pl to occur at the same downstream station,

tgy must equal 0.566ty. For the same station and free-stream Mach number
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equation (73) shows that & is 1.4k times [ , whereas, for the
PL/y P1/p

same value of the parameter (MlBCD %), the value of (92> is 1.51 times
Py H
the value of <§§> . This latter result is in reasonable agreement with
A
results for sonic-wedge leading edges obtained by the rotational-
characteristics calculations of references 16 and 35. (Recall that
blast-wave theory does not apply very near the leading edge nor very far
downstream, but in the intervening region.) Reference 35 shows that an
improvement on the first-order blast-wave theory prediction of the induced
pressures is obtained by subtracting an empirical constant of 0.2. How-
ever, since this constant is found to be the same for helium and air, it
does not affect equation (73) or the results derived therefrom.

From reference 34 the condition for the shock shape created by
leading-edge blunting to be the same in helium and air (i.e.,

&)y - )

[0.90ch/ 5(%)‘2/513 - [o.?}CDl/ 3(%>2/3L (75)

This expression includes a correction by Cheng to the constant for air
(0.73 instead of 0.89 as given in ref. 34). For the same family of
leading edges mentioned in connection with equation (7&), there is

obtained (%) z-%(%) ; thus, for the shock shape in helium to be coin-
H A

cident with that in air, ty must be about 1.33tp. For the same value

2
of the parameter CD(%> , the value of (%)H is 1.23(%%. Note that

these results apply to the aforementioned intervening region and that
as x Dbecomes large the effects of 7y must disappear since in the limit
the shock attenuates to a Mach wave.

Because of the inadequacy of blast-wave theory very near the leading
edge, other approximations of the pressure on the surface immediately
after the juncture of a sonic wedge with a flat plate and of a sonic cone
with a cylinder are of interest. An expression is given in reference 35
for this so-called shoulder pressure for the sonic-wedge—plate in air
and in helium. These results may be used to show that for M; >> 1 the

ratio of (92) to QE) at the shoulder is 1.095. Calculations of

e
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a similar nature have been made for the sonic-cone—cylinder, and in
this case the ratio of g to (;2) at the shoulder for M; >> 1
1 1
H A

is found to be about 1.012, This lower ratio for the sonic cone as com-
pared with the sonic wedge is associated with the greater expansion
angle that the flow experiences at the cone shoulder as compared with
the wedge shoulder. 1In this regard, note that the limiting value of

%2 through an expansion to a vacuum is -1; therefore, the limiting

ratio of (52) to (92) is unity. The ratio for the sonic cone must
H A

il Py
therefore lie between the sonlic-wedge value of 1.095 and the limiting
value of unity; it is found to lie close to the latter.

In reference 36, the pressure distribution over the cylindrical
afterbody of & hemisphere-cylinder in air is given by blast-wave theory
as

2
(%t) - 9:§%§¥- + 0.405 (76)
A

where r is the radius of curvature of the nose and x 1is distance

along the body surface measured from the forward stagnation point. Unpub-
lished results of a general study of bodies of revolution with sonic or
near-sonic tips by Mr. Vernon Van Hise of the Langley Research Center
indicate that at a given body station over that portion of the body where
blast-wave theory may be expected to apply, the induced pressure in
helium may be expressed to first order, at least, by

(ég) = (Constant)(éﬂ) (T7)
1)y P1/,

where the constant of proportionality is of the order of 5/&. On the
assumption that this result is indicative of what may be expected for
a hemisphere-cylinder, it follows that for M1,H = M},A and the same

induced pressure in air and helium,

(8, ~2(%), (18)

Thus, the results for the axisymmetric case agree qualitatively with
the two-dimensional results. A difference in pressure decay between

planar flow and axisymmetric flow 1is; of course, to be expected.
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Prandtl -Meyer flow.- Although the low-pressure sides of airfoils
and bodies at hypersonic speeds are generally of secondary interest,
Prandtl-Meyer expansive flow continues to have a number of useful appli-
cations in hypersonic aerodynamics (e.g., in the flow over curved nose
shapes, such as ogives). Some aspects of Prandtl-Meyer flow pertinent
to air-helium simulation will therefore be presented.

The results of references 37 to 39 show that for My >> 1 and an
isentropic expansion from M; to Mg

Av=—g—(‘—j-——l—) (79)
y - 1M M

where Av 1is the expansion angle from My (i.e., ve - Vl)- (Note
that M; 1is not restricted to free-stream usage but may be the value

of M at any point so long as the ensuing expansion is isentropiec.)
If Ml,H = Ml,A: then for Mf,H to equal Mf,A there is obtained

(AV)H _ Ta - 1

(AV)A = = 0.60 (80)

Ty

This result is compatible with one of the well-known advantages pointed
out at the beginning of this paper for hypersonic helium tunnels, namely,
that less expansion is required to reach a given hypersonic Mach number
with helium than with air.

For M; >> 1, it may be also shown that

2y

7-1
Pr_ (1 (81)
Py M

M M
One interesting result of this relation is that if (—i> = (ﬁl> , then
H £/

(P_f:> e =\ (82)
Py A

By

o)
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The pressure coefficient for an expansion of Av 1is, for M} >> 1,
given by

2y

-1 7-1
Cp = —_27;1 (1 - L_2 My Av) -1 (83)

In order to examine under what conditions Cp,H = Cp,A’ some additional

basic differences between expansions in air and helium must be considered.
Equations (79) to (82) have already implied that the pressure drop through
a given expansion angle Av 1is, for M; >> 1, greater in air than in

helium. Thus, Av in helium will need to be greater than Av 1in air
to achieve simulation of Cp. But recall that the maximum value of Av

(expansion from Mj =1 to M} = ®) is

Avpay = 90° < %—E—% - 1> (84)

which shows that the maximum expansion angle in helium is only about

0.69 times that in air. Furthermore, in expanding to a vacuum, the ratio
of Cpg to Cpa for M p=M a is equal to 7afrg or 0.84. Thus,
it is impossible to simulate in helium expansion angles that are as large
as, or pressure coefficients that are as low as, those that can be reached
in air. (Fortunately these extreme conditions play, with few exceptions,
a negligible role in hypersonic aerodynamics.) The minimum value of

Cp,a that can be simulated is - —2—. The maximm value of Avy

2
7a B
that can be simulated can therefore be determined, with the aid of
equation (83), from

27A
2 2 7p -1 £y
- = - M) 5 Avy -1 (85)
M 2 M 2 2 ’
78"1,H TAM1,A

For Ml,H = Ml,A the following equation is obtained for the maximum
value for AWA that can be simulated in helium:

7A"l

27A
AvA, max = = ( 2 ) ( - Zé) -1 (86)

MLap, -1 4°t



40

This equation yields

_1.152
AWA,max = ¥ (87)
1,A

This expression gives good results; for example, at Ml,A =10 1it gives
AVA max = 6.60° as compared with the exact value of 6.54°.

The general condition for Cp,H = Cp,A is, from equation (83),
given by (for Ml,H = Ml,A)

N

7H'l

1 H
y - 7a y
KH=_L1'—}‘I<'7 lx) -2 > (88)

P

where K 1is the hypersonic similarity parameter and equals M; Av in
this case. From equation (87) the maximum value of KA that can be
simulated is 1.152. The following table lists values of KH/KA for
Cp,H = Cp,A as a function of Kpj:

=
o =3
s

=
=3

S ol
QAN H O OO
OV F o F R

The value of KH/KA = 2.60, corresponding to the minimum value of Cp,A

that can be simulated (%.e., Cp,A = Cp,H = - 2>, is in excellent

reM,H
agreement with exact results for M; >> 1. For example, with Ml,H = Ml,A
Av

exact calculations give <Z¥E> = 2,60 at M; =10; at M; = 1.5 the
v
A
max

FrRE e
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exact value has decreased to only 2.53. With regard to this latter

value, the value of M at the match pointll on rounded blunt noses is
about 1.5.

Lift-drag ratio.- The identical form of equations (27) and (39)
implies that, at least for simple shapes like the flat plate and wedge,
the value of lift-drag ratio at small angles of attack is essentially
the same in helium and air, Thus, the maximum lift-drag ratios should
be essentially the same. An implicit indication of the lack of 7y
effects upon L/D for slender shapes at low angles of attack also exists
in the following series expression for weak shock waves:

5 (7 + UMt - w(my2 - 1)

Ch = 5 +
p (2 - )

/2
)1

2
(Ml -1
acC

For 3 << 1 and Ml >> 1, this expression shows that the wvalue of Egg

5% + . . . (89)

is 2/M; and is therefore unaffected by 7.

Figure 14 shows exact calculations of 1lift coefficient, drag coeffi-
cient, and lift-drag ratio for an asymmetric wedge at M; = 20 in air
and helium. The curves for lift-drag ratio in air and helium are almost
the same.

Closing comments on simulation in inviscid flows.- The preceding
results have illustrated that the differences between air and helium may
be easily evaluated and that the simulation conditions may be expressed
in simple form, at least for simulation of the parameters that have been
examined. There are other facets of air-helium simulation not included
herein that have been treated in previous studies (e.g., the free-jet-
simulation studies of refs. 40 to h2), and there are many aspects that
remain to be examined. However, as stated at the outset, it is not
within the scope or intent of this paper to attempt an exhaustive treat-
ment but rather to compile the results of some recent examinations with
the idea that these results are illustrative of what can be attempted
in hypersonic studies in helium. With this view, inviscid flows will
not be considered further, and attention will be turned to viscous flows.

Hpoint on nose where blunt-nose modified Newtonian theory is
matched to Prandtl-Meyer theory in order to improve the prediction at
large values of «.
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Viscous Flow

Remarks on viscosity laws.- For approximations of skin-friction
coefficient at moderate temperatures in helium, a value of wy = 0.75

is sometimes used for the exponent in the power law for viscosity. This
value agrees closely with the value of wp = 0.76 which gives good

results for air in the temperature range of about 300° to 900° R and
serves as a fair approximation for a somewhat wider range of temperatures.
Thus, an assumption of wyg = wy may be sufficiently accurate under cer-

tain conditions. However, when high temperatures are involved, the power
law for air becomes increasingly inaccurate with increasing temperature
unless wp is varied. (See ref. 43, e.g.) Of course, for best accuracy

in air, Sutherland's law is to be preferred. The results of reference 12
show that the power law gives good results for helium (better than
Sutherland's law) over a wide range of temperatures and that for best
results the value of wy should be 0.647 instead of 0.75. For these

reasons, it is desirable to include in the examinations of skin-friction
simulation the effects of the use of different viscosity laws.

Development of simulation conditions for average flat-plate skin-
friction coefficient.- The reference-temperature method (see ref. Li) .
will be employed with T¥* denoting the reference temperature and T;

the free-stream temperature.
The average skin-friction coefficient may be expressed as (refs. 37
and 43)
T* M1
Cr = Ky (90)
RN

where K; 1is the constant in the incompressible skin-friction laws and

N is the Reynolds number exponent in the same laws (in this paper
N = 1/2 for laminar flow and N = 1/5 for turbulent flow).

If the power law for viscosity
* D
(I (91) )
b\l

is used for both helium and air, then the general expression for simula-
tion with Rp = Ry 1is o
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E
CF}H = T* H (92)
CF,A (T_l>l-N-N(DA
T* A
If Sutherland's law
w o3t Y
Sl _____1 (93)
M Tl ™, B

T, T

is used for air and the power law is used for helium, then the general
expression for simulation with Ry =R, is

N
Cr.m ] T*/y

(94)
CF,A 1- 28 N
% 1
), —
— 4
Tn Ta/,

There are several proposed expressions for T*/T; (see ref. 43, e.g.),
a number of which give essentially the same results, particularly for
M; >> 1. The following expression from reference 45 will be used in the
examples herein and corresponds to an insulated plate and a Prandtl number
of unity:
¥ 1 souper L2
T

M; 2 (95)

Results for CF H= CF A and Ry = Rp.- Four conditions were
selected for calculating the ratio M; H/Ml A for simulation (insulated
plate, Np. = 1). These were wp =wy = O. 76 (by eq. (92)); wy =0.76
and = 0.647 (by eq. (92)); = 0.647 and values of B,[T repre-
sentgiﬁve of an air wind tunneltﬁgy eq. (94)); and oy = 0.634 léﬁa
values of BA/Tl,A representative of those encountered by a rocket
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glider in its glide trajectory (by eq. (94)). It is important to note
that the flight example establishes only the effects of flight values
of BA/TL , for the case of an insulated plate. The effects of the

)

large and unavoidable heat transfer in actual flight might be overriding.
This case has not been examined; however, if equation (95) is generalized
to include heat transfer this problem is readily attacked.

In order to obtain the values of BA/Tl,A for the wind-tunnel

illustration, a value of stagnation pressure was assigned to a given
value of M; 4, and a value of Tl,A slightly above the theoretical

value for condensation was determined from these conditions (unless the
stagnation temperature would be less than 100° F, which was fixed as a
lower limit). A few of these selected values of stagnation pressure
are given in the following table with the values of Tl,A:

Ml)A pt’ Tl’A’
1b/sq in. abs OR

L 200 133

6 600 100
12 4,500 90
22 20,000 . ®

A value of B, of 198 was used to obtain the values of BA/Tl’A. At
extremes of temperature there may be some justification for using values
of Bp different from 198; however, the value of about 198 is known to
be adequate, at least for temperatures between 150° and 3,300° R (see
ref. 43, e.g.) and probably for considerably higher temperatures. Fur-
thermore, for the case of the air wind tunnel of this example where
values of Ty p about 100° R are indicated, the use of a more accurate

value of B, for these low temperatures (BA ~ 180) has only a minor
effect on the results. For this example, then, the values of BA/Tl,A
are of the order of 2 to 2.5 at hypersonic speeds.

In order to establish the flight values of BA/Tl,A’ a rocket glider

was assumed to be following a reentry glide path at a constant 1ift coef-
ficient of 0.06 with a wing loading of 20 (e.g., to be gliding at con-

C
stant W%g of 0.003). This flight path corresponds approximately to a

speed range of Ml,A = 26 down to M; p, =1 as the glider descends from
J
about 250,000 feet to about 50,000 feet. The values of SA/Tl,A for

this glide path under free-air conditions are shown in figure 15 and may
be observed to range between about 0.39 to 0.56. It is interesting to
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observe that these values of PB,/T are very near the value of 0.505
A/71,A

generally used in Sutherland's law for free-air conditions at the lowest
isothermal altitude. (A comparison between experimental viscosity results

and Sutherland's law for gAA = 0.505 may be seen in ref. h5.)

T

2

The values of Ml,H/Ml,A for the four conditions that were selected
for examination are shown as a function of Ml,A for laminar flow
(N = 1/2) in figure 16(a). For ay = wa (independent of the value
of ) equation (92) yieldsl?

1

M Ypn -
LE . |4 - = 0.775 (96)

Myoa 1

Figure 16(a) shows this result to differ considerably from the other
results that make use of more accurate viscosity relations. The use of
wp = 0.76 and wyg = 0.64T7 gives a curve that approaches good agree-
ment with that given for the air-wind-tunnel values of BA/Tl p for

b
Ml,A >> 1. It is important to note the wide difference in the values
of Ml,H/Ml,A at hypersonic speeds between flight and wind-tunnel values
of BA/Tl,AF for Ml,A >> 1, values of- Mi,H/Ml,A of the order of 0.3
to 0.4 are required for the example of wind-tunnel simulation, whereas
for the flight example the values of Ml,H/Ml,A are not greatly differ-
ent from unity.

For the turbulent boundary (N = 1/5) figure 16(b) shows that all
four conditions examined give values of Ml,H/Ml A that are of the same
J

general magnitude and that are relatively insensitive to changes in
Ml,A' For Ml,A >> 1, the values of Ml,H/Ml,A range from about 0.7

for the wind-tunnel example to about 0.8 for the flight example. Thus,
although inadequate for laminar flow, equation (96) may be satisfactory
for turbulent flow. It remains, however, to interpret the importance of
differences in Ml,H/Ml,A in terms of differences in CF,H/CF,A: for as

was shown in the section on inviscid simulation, large differences between
the values of M; g and M; , required for simulation do not necessarily
J J

imply that large differences exist without simulation for the parameter
in question. With this in mind, an examination has been made in the fol-
lowing section of the difference that exists between CF,H and CF,A

when the Mach number and Reynolds number are the same in air and in helium.

12This result has been previously obtained by Fred W. Matting and
Dean R. Chapman of the Ames Research Center, NASA, for both laminar and
turbulent boundary layers.
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Results for My y =M 5 and Ry = Rj.- The curves of figure 17(a)

for laminar flow show by comparison with the curves of figure 16(a), that
the deviations from unity in the values of M} H/Ml A that are required

for simulation do not imply equally large deviations from unity in the
values of CF,H/CF,A without simulation. Without simulation (fig. 17(a))
the values of CF,H for the flight example are within 10 percent or less
of the values of CF,A over the entire Mach number range, and for

M; 2 12 they are within 2 or 3 percent. Also without simulation, the
values of Cp H/CF A for the wind-tunnel example and for the power-law

curve with wp = O. 76 and wyg = 0. 647 come into close agreement at
the higher Mach numbers and tend toward a value near 0.7. Figure 17(a)
also shows that the least-accurate assumption of wp =wg = O. 76

(eq. (96)) leads to values for Cr,H[CF,A not greatly different from
unity; CF g 1s only about 6 percent less than CF p for M; > 8.

The curves of figure 17(b) for turbulent flow show, by comparison
with the curves of figure lé(b), that the deviations from unity in the
values of Ml,H/Ml,A that are required for simulation are, at hyper-

sonic speeds, indicative of the deviations from unity in the wvalues of
CF,H/CF,A without simulation. For turbulent flow, the relative insensi-

tiveness of the results to the viscosity law employed and to the value
of T3,p 1is also evident. Thus, for turbulent flow the assumption of

wp = Wy (eq. (96)) may give a reasonable approximation; it gives results
within a few percent of the results for the flight example.

Hypersonic approximations of results for RH = RA" For the results
presented thus far (case of wg = wp excluded, eq. (96)), the following
expressions may be used for M; 2 10. All these expressions are for an
insulated plate, Prandtl number of unity, and Ry = R,.

(1) Power law for helium and air {wp = 0.76; wy = 0.647)
(a) Laminar flow (N = 1/2):

For CF,H = CF,A’

M
ol 1 osy, 0432

(97)
Ml A )

++ F
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For Ml,H = Ml,A’
B 10w 011 (98)
Cr,A
(b) Turbulent flow (N = 1/5):
For CF,H = CF,A’
L
b M
1 -
\ LB _ o.80m, ,0-O3 (99)
Mpa ’
)
For Ml,H = Ml,A’
%r,E _ 0.74m; ~0-O%5 (100)
Cr,A

Note the similarity of equations (99) and (100) which supports the con-
clusion of the preceding section that values of Ml,H/Ml, A are indica-
tive of the values of cF,H/cF, A if the flow is turbulent.
(2) Sutherland's law for air; power law for helium (wyg = 0.647)
(a) Laminar flow (N = 1/2):

For CF,H = CF,A’

M 1.42
_LH - o.52M, AO-“2 1 (101)
M P B
1,A 14+ A
T1,A
For My g =M a,
>
c 0.50
B 0Y: QRN C T - (102)
. Cr,A . _FA
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(b) Turbulent flow (N = 1/5):

For CF,H = CF,A’

M 0.15
_LH _ o 1M o.ouk/ 1 (103)
1,A
My A ’ 14 _PA
T1,A

For Ml,H = Ml,A'

c 0.20
. _ o6 00592

CF,A Ba

)
T1,A

(104)
1+

Simulation of Cp for M; g = M), A Dby use of Reynolds number.-

Although the use of the Mach number ratio to achieve skin-friction simu-
lation is suitable for some types of investigations, the wide difference
in Mach numbers between helium and air that may be involved would be
undesirable in many studies, particularly those in which the objective
is to simulate, insofar as possible, nonviscous and viscous effects
simultaneously. In such tests the condition Ml,H = Ml,A would, in

general, be preferred in view of the inviscid-simulation requirements
shown in this paper.

With the results that have been presented for CF,HICF,A with

Ml,H = Ml,A and Ry = Ry, the ratio of RHIRA necessary for E%;% =1
b
with Ml,H = Ml,A may be established as follows.

c
Let ¢ =22 for Ry =R,. With the aid of equation (90), the
Cr,A
following expression is obtained:
N
R
SF;}I. =1 = 0(_A> (105)
Cr, A Ry

It follows that for laminar flow (with N = 1/2)

R
iz G (106)
Rp

= &
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and for turbulent flow (with N = 1/5)
—_— = 05 (107)

Thus, equations (106) and (107) in conjunction with figures 17(a) and
l7(b), or the results of the preceding section, permit the determination
of the value of RH/RA for simulation of Cp with M} g =M; 4.

2 2

For example, take M; =20 and RA = 10 x 106. For the air-wind-
tunnel simulation example, there is obtained Ry = 4.65 x 106 for laminar

flow and 4.01 X lO6 for turbulent flow. For the flight example,
RH = 10.57 X 106 for laminar flow and 5.55 X 106 for turbulent flow.

Thus, the wind-tunnel example requires approximately the same value of
Ry for laminar and turbulent flow, while the flight example requires

what may be significantly different values of Ry for laminar and turbu-

lent flow. Such factors as these will determine whether it is more
attractive to obtain first an air simulation for wind-tunnel conditions
and then convert these results to flight values or to simulate flight
conditions directly. The amount of laminar or turbulent flow that may
be expected on a vehicle would also enter into the decision.

Effect of Mach number on skin-friction coefficient in helium.- The
variation of Cg in helium with M) may be obtained by use of equa-
tions (90) and (95), or the simulation results that have been derived
may be used to transform a base curve for air. The latter approach has
been used herein to afford a direct comparison between the air curve
and the helium curve and to demonstrate the application of the simula-
tion results. Either the ratio CF,H/CF,A or Ml,H/Ml,A may be used

in the transformations.

For laminar flow, figure 18, Sutherland's formula with Egéz = 0.505
J
has been used in equation (90) to obtain the base curve for air. This
curve is in essential agreement with the Crocco solution at the same
Prandtl number. Small differences in Prandtl number are of minor impor-
tance, however, since, as has been shown in references 46 and 47, varia-
tions in Prandtl number, at least within the range 0.725 € Np, = 1.0,

have only minor effects on the values of Cp. (Also compare the present
air curve with the Crocco solution in ref. 43 for which Nppr = 0.725.)

Because of the sensitiveness of the laminar simulation results to the
viscosity law employed and to the value of BA/Tl,A: transformation of

this particular air curve must be restricted to values of BA/Tl,A
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near 0.505 and to use of Sutherland's law for air. Consequently, the
flight example of this paper has been used to obtain the helium curve
in figure 18.

For turbulent flow, the simulation results are relatively insensi-
tive to the viscosity law employed and to the value of BA/Tl,Ai conse-

quently, the power law with wp = 0.76 has been used in equation (90)

to obtain the base curve for air shown in figure 19. This curve gives
slightly lower values of Cp[Cp,; than those given by the Van Driest

solution (ref. 47) that employs the power law for viscosity and the
similarity law for mixing length; however, this base curve appears to
be in close agreement with experimental results for zero heat transfer
shown 1n reference 37. Since the power law has been used for the air
curve, the power-law similation results (with wp = 0.76 and

wy = 0.647) have been used in the transformation of the air curve to
obtain the helium curve im figure 19.

Although the value of 0.76 for wp that has been used in the

examples herein gives good results for moderate temperature applications,
a change in temperature level at a given reference-temperature ratio may
significantly change the value of wp, as shown in figure 20. Such
changes in wj are more important for laminar flows than for turbulent
flows, both with regard to the skin-friction coefficients and the simu-
lation ratios. For example, the results shown in figures 16 and 17
imply that large changes in wj have a minor effect on the simulation
ratios for turbulent flow.

Simulation of displacement thickness.- The displacement thickness
of the boundary layer can be of considerable importance at hypersonic
speeds, and its treatment in the literature has been extensive. It will
only be noted here that when the skin-friction coefficient is simulated,
the boundary layers are similar for practical purposes, and the displace-
ment thickness is therefore simulated. For example, take the case of
M; >> 1 and an insulated plate with Np,. = 1. For simplicity, take the

simplest viscosity assumption used previously, that is, Wy = Wwp. (Note

that, as before, this is not the best assumption, but it is sufficient
for this purpose.) For these conditions the displacement thickness is
given by (ref. 37, e.g.)

* M 2
&~ (r - D4 (108)
R

from which the displacement thickness in helium is indicated to be
5/3 times that in air for the same values of M; and RN. For simula-

tion of &% with Ry = Ry, equation (108) yields the same ratio of
Ml,H/Ml,A as that given by equation (96) for simulation of skin-friction
coefficient under the same initial assumptions.

£+
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Boundary-layer displacement effects, weak interaction.- From refer-
ence 48 the first approximation to the pressure distribution that is
induced by the presence of the laminar boundary layer on a flat plate
with sharp leading edge (Prandtl number of unity) is, in the weak inter-
action region, given by

L M8, (109)
P1

where in this case &g is the flow deflection angle at the edge of the
boundary layer and is given by

Be = nga\E = fvx% X (110)

MlB\C

In this expression X is the interaction parameter , where R

is based on distance along the surface from the leading edge and C 1is
the constant of proportionality in the linear form of the temperature-
* *
viscosity relation K- = c %I For the insulated plate, ¢ = 0.599(y - 1),
1
and for the noninsulated highly cooled plate, with M; — o,
t = 0.166(y - 1). For simulation of ®e for either the insulated or
noninsulated plate, the ratio of the interaction parameters must there-
fore be, for M; g = M) a,

% Y, =1
H_A_  _o0.60 (111)
XA vy -1

This resultl? may be used with equation (109) to show that simulation of
Ap/pl with Ml,H = Ml,A requires

pé -1
__H A _A_l = 0.50 (112)
Xy THVEH "

The derivations in reference 48 imply that equations (111) and (112)
apply so long as the ratio of the wall temperature to free-stream stag-
nation temperature is essentially the same in helium and air. '

13From reference 48 the ratio of the boundary-layer thickness to
distance from the leading edge, for M; >> 1, is in the weak interaction
region 0'332(7 - l)X. Equation (111) is thus the simulation condition
M
1

for this ratio as well as for &,.
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A simulation condition for My JH = Ml A ‘that is represented by

XH/XA. may be expressed in terms of the Reynolds number requirement for

simulation by

-2

R Cor [ %

- H> (113)
Ry Ca\xa

Values of CH/CA may, with the aid of equation (95), be determined from

c . <%f>“'l (124)
1

for the power law for viscosity and

1/2 L+ T_B'

C - G%f> __ L (115)
1 L
L Ty

for Sutherland's law for viscosity. For example, with M; >> 1,
wp = 0.76, and wy = 0.647, the power law gives

C
“H _ 1.04 (116)
CA Mlo.226

If the results of other studies of the weak-interaction region are

used to obtain the simulation requirements for &) . ég , the ratio
151 Py
il A
of KH/YA is found to be close to that given by equation (112). For
example, the results of reference 49 yield 7ﬁ/iA = 0.50, the results

‘of reference 19 yield iﬁ/fA = 0.56, and the results of reference 50
give XHIXA 0.52.

Boundary-layer displacement effects, strong interaction.- From
reference 51 (see also ref. 49) the induced pressure in the strong-

interaction region on an insulated flat plate with sharp leading edge
is given by

-1 (117)

Op 7(7 - l)l/gY y -1

51 Yy + 1 y + 1
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which ylelds as the simulation requirement for (£2> = C§B>
H A

151 P
% - 0.685 + Q1 (118)
XA XA

In reference 52 the strong-interaction region has also been examined
for an insulated flat plate for both a sharp and a blunt leading edge.
The general expression for the induced pressure is (to first order)
given in the form

= AX|1 + B|—— -1 (119)

\[_

The constants A, B, and g 1in this equation may be evaluated by the
expressions in reference 52. The following results are obtained:

g
Py

(1) For helium:

(a) Sharp leading edge

\{—060
;& 0.92X|1 + 1.78/ X\ M -1 (120)
1

(b) Blunt leading edge

\(— 0.40]
&2 _ 5.92%|1 + 2.18(2Y ! -1 (121)
Py ﬁ
(2) For air:
(2) Sharp leading edge
i M. [T \0- 524
2 | 0.50%[1 + 1.80 _l__‘[ -1 (122)
151 \Iﬁ
(b) Blunt leading edge
[ \r 0.286
&P - 0.50%|1 + 2,23 ! -1 (123)
by \[ﬁ
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For the zeroth-order solution the second term within the brackets in
equations (120) to (123) becomes zero, and the solution is the same for
the sharp and blunt leading edges. Thus, the zeroth-order simulation of
Op/py requires that

M _o.565 (124)
Xp

The approximate agreement of this result for strong interaction with the
results shown in the preceding section for weak interaction might be
expected since if the pressures in the strong-interaction region are
simulated, the pressures in the smoothly adjoining weak-interaction
region should be reasonably simulated.

e

In order to examine the simulation requirements for the sharp and
blunt leading edges according to equations (120) to (125), a range of
values between O and 10 was selected for the parameter Z,, where

M.\C

Z = —i——. This should give ample coverage of X for the present pur-

\R

poses (note X = M12Z). The calculated ratios of ZH/ZA for simulation
of Ap/pl are given in the following table for sharp and blunt leading
edges:

Zy |Zp
Zp Sharp Blunt
leading edge leading edge
0 0.565 0.565
.0001 .570 627
.001 .581 .662
.01 .605 .695
.1 647 .695
.8 664 .653
1.0 .663 645
10 .625 .562

The value of Z, = 0.8 is included in the table to show that Z, = 1.0
is not associated with the maximum value of ZH/ZA for the sharp leading

edge. This appears to be a trivial point, however, in view of the small
variation of ZH/ZA with 2, 1in the range of Zp where strong-

interaction theory should be most appllcable, that is, Ml2Z =X >> 1.
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Within the range 10-2 < Zp < 1.0, the values of ZH/ZA imply, for
M; >> 1, fair agreement with the values of Yﬁ/iA given by equation (118).
For values of Z, much greater than 10 the value of ZH/ZA falls below
that for 2, =0 (the zeroth-order approximation).

Note that the values of ZH/ZA given in the preceding table may be
taken as values of 7ﬁ/iA if Ml,H = Ml,A- It follows that these values

may be used with equations (113) through (116) if simulation by use of
Reynolds number is desired.

The results of reference 18 may be used to show that equation (th),
and therefore the values of ZH/ZA for simulation, are essentially

independent of the ratio of wall temperature to recovery temperature.
Relations given in reference 49 indicate that the ratios of 7ﬁ/iA for

simulation of Ap/pl for both strong and weak interaction will also

give simulation of the average (or local) skin-friction-drag coefficient
that includes t?g displacement effect when the coefficient is expressed
in the form SE——.

i

The attention that has been given herein to displacement effects is
not intended to imply that these effects will always play a major role
in the pressure distribution. For example, when the wedge or cone angle
downstream of a sharp or blunt leading edge is large, the displacement
effects may be small (ref. 17), and the inviscid predictions are gener-
ally adequate.

Knudsen number and molecular speed ratio.- In tests at M; >> 1

two parameters that may be of interest are the Knudsen number and the
molecular speed ratio. The Knudsen number is given by

M
Nkn = ?l\’-‘z‘- v (125)

from which it follows that simulation of Ny, by use of Reynolds number,
with Ml,H = Ml,A: requires

Ra _ |78 _ 1.091 (126)
RA 7A
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The molecular speed ratio is given by

N, =M \E (127)
and 1its simulation requires that
M 14
LE_ |TA 0.917 (128)
Mi,a TH

which also achieves simulation of NKn if RH = Rp.

Closing comments on simulation in viscous flows.- As for inviscid
flows, a number of aspects of simulations of viscous flows remain to be
examined, and extensions can be made to the work contained herein. For
example, alternate forms of equation (95) that take into account heat
transfer, varying specific heat, and varying Prandtl number will permit
the simulation requirements to be established for these conditions. The
method of similar solutions of the boundary-layer equations has been
used in reference 18 to obtain the heat transfer, skin friction, and
boundary-layer thickness in a pressure gradient for both air and helium;
simulation conditions may be determined from these results for the family
of pressure gradients considered. 1In establishing the conditions for
simulation of heat transfer, gas properties other than ¥ must, of
course, be considered (e.g., the properties involved in Prandtl number).
In this regard, the difference in viscosity between air and helium has
been indicated herein; the difference in conductivities is such that at
room temperatures helium conducts heat almost seven times as fast as
air; the difference in specific heats at constant pressure, also at room
temperature, is such that pound for pound helium holds about five times
as much heat as alr. Additional details on the properties of helium and
on operational problems involved in its use may be found in reference 15,

CONCLUDING REMARKS

The results of some studies of the air-helium simulation problem
at hypersonic speeds have been compiled. The differences that may be
expected between tests in air and tests in helium are illustrated, and
simple expressions are presented for achieving simulation of a number of
parameters. These simulation expressions are in most cases given in
general form so that they may be applied to any two gases having differ-
ent ratios of specific heat. An ideal gas has been assumed throughout.
Both viscous and nonviscous flows are considered.

=




e

5T

The results show that several parameters require the same conditions
for simulation while other parameters require different conditions. Some
Parameters may not require simulation; a number have a value in helium
that without simulation is within about 10 percent or less of the value
in air; a few are negligibly different in air and helium. Thus, the
overall results show that there is no general rule for air-helium simula-
tion., Although complete simultaneous simulation of all flow conditions
about a model will probably be rare, it does appear possible to obtain
sufficient simulation for many types of aerodynamic as well as fluid-
dynamic studies and to interpret most helium results in terms of air
results.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., June 30, 1959.
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similate the normal-force coefficient on inclined thick plates, with
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seminose angle (from ref. 4). M; R 10; t/c = 0.10.
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(a) Laminar flow.

Figure 16.- Ratio of free-stream Mach number in helium to that in air
required for simulation of average skin-friction coefficient for lam-
inar flow. Cp,H = CF,a; Rg = Rp; Npp = 1; insulated plate.
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